
ProLinguist: Program Synthesis for Linguistics and NLP

Partho Sarthi , Monojit Choudhury∗ , Arun Iyer∗ , Suresh Parthasarathy∗ , Arjun
Radhakrishna , Sriram Rajamani

Microsoft Research India
{t-pasar,monojitc, ariy, supartha, arradha, sriram}@microsoft.com

Abstract

We introduce ProLinguist, an approach that uses
program synthesis to automatically synthesize ex-
plicit string transformation rules from input-output
examples for NLP tasks. Our algorithm is able
to learn rules not only where the output depends
on the surrounding input context, but also stateful
rules, where it also depends on the results of apply-
ing transformation rules to the input context. Our
algorithms work for both small and large amounts
of potentially noisy training data. Furthermore,
the learning process, as well as the level of ab-
straction of the inferred rules, can be controlled
by an expert by providing linguistic knowledge
to ProLinguist in the form of a Domain Specific
Language. We demonstrate ProLinguist on a vari-
ety of NLP tasks ranging from textbook phonol-
ogy problems to a more complex grapheme-to-
phoneme conversion for Hindi and Tamil, showing
that it can produce interpretable rules from small
amounts of training data.

1 Introduction
String transformations are at the heart of many NLP tasks
such as grapheme-to-phoneme (G2P) conversion [Novak et
al., 2012], morphological analyzers [Karttunen and Beesley,
2005], transliteration [Knight and Graehl, 1998] and machine
translation [Knight, 2007]. Typically, these transformation
rules are either hand-coded (e.g., [Choudhury, 2003]), or
learned from data in the form of Deterministic Finite-state Au-
tomata (DFA) [Beesley andKarttunen, 2003; Casacuberta and
Vidal, 2004], decision trees (e.g., [Lee and Oh, 1999]), etc.
With the rise of neural networks, sequence-to-sequence mod-
els (e.g., RNNs and biLSTMs) are also commonly used for
these tasks [Bahdanau et al., 2014]. Here, the transformation
rules are learned from large amounts of training data, and are
implicitly represented in the structure of the network. How-
ever, the two approaches —(1) learning interpretable rules
from small amounts of data that would inform a linguist, and
(2) learning models from large amounts of training data for

∗Contact Authors

developing language application— have largely remained in-
dependent and are presently drifting further apart due to com-
plete non-interpretability of neural models.

We use program synthesis techniques (see, for example,
[Gulwani, 2011; Solar-Lezama et al., 2005; Alur et al., 2013])
to automatically learn string transformation rules from data.
The generated rules are interpretable, and the level of abstrac-
tion can be controlled by the user by providing an appropri-
ate Domain Specific Language (DSL), which specifies the set
of transformation operations. Existing synthesis algorithms
can be used to learn rules that transform an input token to a
corresponding output token. It is also possible to make the
transformation rule depend on the input context, by provid-
ing the surrounding input tokens also as additional inputs to
the synthesis algorithm. However, learning stateful rules re-
quire more than the input context. They require, in addition,
the results of the transformations applied to the input context.
This is the key insight behind Stateful Noisy Disjunctive Syn-
thesis (Stateful-NDSyn), which is the main algorithm in the
paper. Stateful-NDSyn generates stateful rules using multi-
ple passes, and multiple stages in each pass over the input
string. In each stage, the results of the outputs of the previous
stages are passed in as inputs, and the system learns a func-
tion over the history of the past results as well as current input
to produce the output. In that sense, our approach transports
intuitions from recurrent neural networks (such as RNNs or
LSTMs) to program synthesis.

Stateful-NDSyn builds on significant recent advances in
program synthesis. FlashMeta [Polozov and Gulwani, 2015]
is a powerful framework where the user can input a DSL and
the synthesis algorithm restricts the space of rules to the rules
expressible by the DSL. By tuning the DSL, the user can
convey domain specific intuitions to the synthesis algorithm
and learn domain specific rules taking into account such intu-
itions. Noisy Disjunctive Synthesis (NDSyn), was recently
developed to handle noisy labeled data in program synthe-
sis [Iyer et al., 2019]. Our algorithm Stateful-NDSyn, devel-
oped in this paper, builds on NDSyn, and learns stateful rules
by applying multiple passes as mentioned before. Addition-
ally, since we build on NDSyn and FlashMeta, we are able
to handle noise in the inputs, and also allow domain experts
to specify domain and language specific intuitions. Previous
works [Barke et al., 2019; Ellis et al., 2015] on applying pro-
gram synthesis to the phonological rule problem are able to

learn contextual rules from small noise-free datasets, but not
stateful ones.

These new capabilities enable productive use of program
synthesis for NLP problems, which has not been possible be-
fore. We demonstrate our approach on various lexical and
textbook problems aswell on amore complexG2P conversion
task for two languages —Hindi and Tamil. ProLinguist can
learn very accurate and linguistically interpretable rules from
an order of magnitude fewer labelled input-output exam-
ples as compared to state-of-the-art machine learning systems
[Linzen, 2020].

The primary contributions of this work are: (1) We pro-
pose a novel stateful program synthesis algorithm called
Stateful-NDSyn, to learn linguistic rules. Stateful-NDSyn
can be used to learn stateful transformation rules from both
small as well as large amounts of data. (2) We demonstrate
the applicability of this algorithm for various phonological
tasks. We also incorporate an elegant way to include domain
knowledge during synthesis. (3) We have implemented the
Stateful-NDSyn algorithm in a tool ProLinguist, and demon-
strate various aspects of ProLinguist such as generalizability,
flexibility, interpretability of the rules, and the ability to han-
dle noise and identify outliers. (Sec 4).

2 Problem Setting
In order to demonstrate the effectiveness of program synthesis
in NLP problems, we chose a set of phonological processes
across different languages and a well-studied task of G2P
conversion. Traditionally, these tasks have been approached
through rule-based techniques and therefore, the rules are well
documented for many languages. Consequently, unlike more
complex sequence-to-sequence tasks, e.g., MT, the chosen
tasks provide us a direct way of evaluating and comparing
the string transformation programs synthesized by our system
against the rules designed by experts.

While program synthesis can be applied to any string trans-
formation problem, phonological processes and tasks like
grapheme to phoneme transformation are particularly suited
for program synthesis. The transformations are typically in-
dependent of other linguistic layers: therefore, the informa-
tion for learning the re-write/transform rules is present ex-
clusively in the input-output examples. Further, these pro-
cesses operate on natural classes that are universal to most
languages (e.g., place of articulation or manner of articula-
tion classes). This allows a program synthesizer to operate
on a single domain-specific language, with very few custom
per-language features.
Primer on Program Synthesis. Example-based program
synthesis is a technique for synthesizing programs from a
given DSL that are consistent with a small number of given
examples. The key difference between program synthe-
sis engines and other rule induction techniques is that pro-
gram synthesis engines are able to learn complex programs
(rules) from just 1-2 training examples, at the cost of be-
ing very domain specific (see, for example, [Gulwani, 2011;
Rolim et al., 2017]). In our work, we use the FlashMeta pro-
gram synthesis algorithm [Polozov and Gulwani, 2015], as
implemented in the PROSE framework [Microsoft, 2015]. In

the FlashMeta framework, a synthesis task is given by a DSL
L and a set of input-output examples ik 7→ ok, and the frame-
work synthesizes a program P ∈ L such that P (ik) = ok
for each k. As a simple example, L for learning sub-string
transformations can look like
out := Substring(x, pos, pos);
pos := const_int | regex_search(x, r)
Given an input-output instance like {Mr Foo 7→ Mr}, the
synthesizer can output a program like Substring(x, 0,
regex_search(x, '\s')).

We refer the reader to the rich literature in this area [Solar-
Lezama et al., 2005; Alur et al., 2013; Gulwani, 2011;
Polozov and Gulwani, 2015; Singh and Gulwani, 2012], and
to [Gulwani et al., 2017] for a survey of techniques. In sum-
mary, program synthesis allows us to generate candidate rules
from a small number of examples.
Notations. The task at hand is to transform a sequence
of input tokens i0i1 . . . in to a sequence of output tokens
o0o1 . . . om. We assume that the ik’s and ok’s are drawn from
a universe of input and output tokens I and O, respectively.
In the lexical tasks, the universe I is the set of underlying
form, and the setO is the set of surface form. In the G2P sce-
narios, I is the set of orthographic symbols or graphemes in
the script of the language, andO is the set of phones. The pro-
gram synthesis technique we use produces rules of the general
form A → B/X_Y

• This notation can be summarized as phoneme or feature
vector A is re-written as phoneme or feature vector B
when the left context isX and right context as Y [Chom-
sky and Halle, 1968]. In ProLinguist, the context can be
more than a single character.

• To encompass all the rules inferred by ProLinguist,
we overload this notation. Specifically, we let A be
graphemes and X , Y be predicates over graphemes as
well as phonemes.

• Also, in cases where A takes grapheme values from an
Indian language, we denote both the grapheme in native
alphabet followed by its ITRANS [Chopde, 2001] nota-
tion denoted between ⟨ ⟩ (for example, च⟨cha⟩).

3 Program Synthesis for NLP
As stated before, the task of the program synthesis engine is
to take as input, examples of the form
i0 . . . in 7→ o0 . . . om, and produce rules of the form A →
B/X_Y . We assume that the alignment between input and
output characters is given to us during training.

Given the alignment, we use the term token-level exam-
ples to denote the input-output behavior of single tokens in
the context of a whole word. For example, in the input-output
example बचपन ⟨bachpan⟩ 7→ [b@.Ù.p@.n], one token-level ex-
ample is given by च⟨cha⟩ → [Ù] /ब_पन .
Providing Domain Knowledge. We allow a domain expert
to provide domain-specific features. In Hindi and Tamil, the
featural properties used are place of articulation features (e.g.,
[guttaral], [palatal], and [retroflex]) and manner of articula-
tion features (e.g., [plosive], [nasal] and [fricative]), respec-
tively. These are well-known and universal phonological fea-

tures that are expected to influence the G2P rules of many
languages.

In addition to these, we provide features such as [C],
[half vowel], and [full vowel] for whether a token is a con-
sonant, an inherent vowel, or an overtly marked vowel re-
spectively. The last two features are specific to the orthogra-
phies of Tamil and Hindi, or more generally - abugidas1. We
also include certain universal phonological features such as
[+voi], [−son], [−syll].
Domain specification language Our DSL is equivalent to
SPE rules. The main kinds of operators are as follows:

• Positioning. We use relPos(token, i) operators to iden-
tify the context relative to the token of interest. For ex-
ample, relPos(token, 2) and relPos(token,−1) refer to
the position follows token 2 places to the right, and im-
mediately left of token, respectively.

• Predicates. The predicates are Boolean functions on to-
kens. We use two atomic predicates, and their Boolean
combinations. (1) HasFeature(F, token) which returns
true if token has the feature F, (2) Match(y, token)
which returns true if token is equal to y.

• Transformations. Transformations are given partial
functions that map tokens to tokens. We use a set
of atomic transformation as detailed below, as well as
conditional transformations of the form if(pred) trans
where pred is a predicate and trans is a transformation.

We list the atomic transformations used in our DSL
here: (1) DefaultTransformation(token) operator provides
the default transformation of token including the implicit
vowel if any. For example, DefaultTransformation(च) :
च⟨cha⟩ 7→ /Ù@/. (2) ReplaceBy(token, y) operator is a
general purpose operator which transforms token to y. As an
example, in English Past Tense, one of the transformations
is ReplaceBy(b,bb) : ⟨b⟩ 7→ ⟨bb⟩. (3) (Hindi and Tamil)
DeleteSchwa(token) operator deletes the implicit schwa from
the default translation of token. We represent this operator as
DeleteSchwa(च) : च⟨cha⟩ 7→ /Ù/. This transformation can
also be represented by using only phonemes as /@/ 7→ ∅.
(4) RetainSchwa(token) operator adds a feature to a token
marking that the implicit schwa in the abugida cannot be
deleted by additional transformations.

We share the same DSL across all the tasks in our experi-
ments (Sec 4).

3.1 Stateful Noisy Disjunctive Synthesis
NLP problems brings a unique combination of challenges to
program synthesis.

• Noise. For many languages, the available data-sets
themselves are noisy due to the lack of high-quality
phonemic transcriptions. In such cases, the dataset it-
self is built using approximate techniques.

• Exceptions. Additionally, languages almost always
have exceptions to their standard phonological rules.
These may be due to loan words or other in-language
exceptions.

1An abugida or alphasyllabary, is a writing system in which
consonant–vowel sequences are written as a unit

• Statefulness. Linguistic rules often interact in a stateful
manner. For example, applying one rule to a grapheme
will often change what rule should apply on neighboring
graphemes.

Example 3.1. In the Hindi G2P case, a well-known stateful
rule (see [Choudhury, 2003]) is equivalent to “If the preceding
and following characters’ schwa is marked as to be retained
by previous rule applications, delete the current schwa”. Note
that this rule is not the same as /@/ → ∅/@_@ .

We develop a novel program synthesis algo-
rithm Stateful-NDSyn to synthesize stateful rules from
a given set of noisy phonemic transcription examples D.

Algorithm 1 describes the high level procedure for
Stateful-NDSyn consisting of three steps in a loop:

• Repeatedly sample a small number (usually 1-3) of ex-
amples D′ from D, and use a classical (noise-free) pro-
gram synthesis to produce a large number of candidate
rules R′.

• Choose a subset of rulesR ⊆ R′ that cover all (or most)
of the examples in the full data set D with the least
amount of errors. This is done with a approximate set
cover algorithm.

• Apply the selected rules to the data-set, annotate each
token with an additional feature that corresponds to the
which rule from R (if any) was applied on that specific
token. In the next iteration of the loop, NDSyn may use
these additional features to generate rules.

The first two steps are a variant of the NDSyn algorithm
from and has been shown to filter out random noise from a
dataset [Iyer et al., 2019]. The third step is crucial to syn-
thesizing stateful rules: The annotations allow the following
iterations to use the information generated from the current
set of rules. We repeat this loop till significant inputs are cov-
ered. The output of this algorithm are a stratified set of rules
R = ⟨R0, R1, . . . , Rn⟩ along with outliers (Sec 4.3). Intu-
itively, these rules are applied in sequence, i.e., first apply all
rules in R0, and then R1 and so on.
Synthesizing Rules from a DSL. The procedure Synth in
Algorithm 1 is repeatedly calledwith a small number of token-
level examples D′, and produces a candidate rule from the
DSL using the FlashMeta synthesis procedure. In all passes
but the first, the synthesizer may generate rules that depend
on the new annotated features and outputs from the previ-
ous passes. An additional complication in this step is the size
of the context to allow: choosing very large contexts allows
for very specific rules which may only apply in a few words,
while very small contexts may not be sufficient to express the
required rules. In practice, we start with a context size of 1
(i.e., the tokens preceding and succeeding the current one),
and increase the context size over the course of the algorithm.
Selecting rules using Approximate Set Cover. The pro-
cedure NDSyn of Algorithm 1 uses the approximate set cover
algorithm for picking a few “high quality” rules among the
hundreds of candidates generated. The quality of the rule is
defined by the Score function based on the number of exam-
ples (not already covered by a previously generated rule) that
are consistent and inconsistent with the rule. Here, consistent
and inconsistent examples are those where the rule applies and

Algorithm 1 Stateful Noisy Disjunctive Synthesis
Require: Token-level examplesD
Require: Pass threshold P
1: Dpass ← D, pass← 0
2: R← ⟨⟩ ▷ Output rule-set sequence
3: while pass < P do
4: Rpass ← NDSyn(Dpass)
5: Dpass ← ∀x ∈ Dpass | Annotate(R, x)
6: R← R, Rpass ▷ Add Rpass to output sequenceR
7: pass← pass + 1

8: return (R,Outliers(uncovered inputs))
9:
10: function NDSyn(D, Threshold 0 ≤ t ≤ 1)
11: R′ ← ∅
12: while significant fraction of inputs not covered do
13: D′ ← Sample small subset ofD
14: R′ ← R′ ∪ Synth(D′, ctx)
15: return ApproxSetCover(D,R′, t)

16:
17: function ApproxSetCover(D,R′, t)
18: uncovered← D;R← ∅
19: while |uncovered| > t · |D| do
20: r∗ ← argmaxr∈R′Score(r, uncovered)
21: R← R ∪ {r∗}
22: uncovered← uncovered \ {
23: ex ∈ uncovered | Consistent(ex, r∗)}
24: return R
25:
26: function Score(r,S)
27: incorrect← {ex ∈ S | Inconsistent(ex, r)}
28: correct← {ex ∈ S | Consistent(ex, r)}
29: if |incorrect| > ϵ · |S| then return 0

30: return |correct|

produces the expected and unexpected output, respectively.
Note that there is a third category of examples – ones where
the rule does not apply at all. Hence, the procedure prioritizes
rules that are consistent with a large fraction of the data-set,
while making few mistakes.
Example 3.2. Using the case बचपन ⟨bachpan⟩ 7→ [b@.Ù.p@.n],
for the transformation न ⟨na⟩ 7→ /n/, a candidate rule gener-
ated is @ → ∅/_# (delete the schwa at the end of the word as
the default Hindi transformation is न ⟨na⟩ 7→ /n@/). This rule
applies consistently across all examples, and hence, is scored
highly and selected early.

Similarly, fromच ⟨cha⟩ 7→ /Ù/, the rule @ → ∅/_C can be
generated. However, it is not a standard Hindi phonological
rule and is ranked very low due to a large number of inconsis-
tent examples.
Multi-pass to synthesize stateful rules. After each itera-
tion of Algorithm 1, we process the training data with the
rules R that were selected, annotating each token with the
rule that was used on it (if any). For example, if a to-
ken was processed using the DeleteSchwa transformation,
we add a feature called DeleteSchwa to the token. In
the next iteration, one of the allowed predicates would be
HasFeature(DeleteSchwa, _). At each pass i, we attempt to
produce the largest set of rulesRpass that can be applied with-
out incorrectly transforming more than a fraction ϵ of the to-

kens. Eventually, after the pass bound P is reached, a se-
quence of rule sets R0, R1, . . . RP is returned, along with a
number of outliers. The outliers are the set of inputs on which
applying all of the returned rules R0, . . . , RP still does not
produce the expected output.
Example 3.3. For theHindi G2P scenario, the synthesizer pro-
duces the stateful rule
/@/ → ∅/RetainSchwa_RetainSchwa
This rule is equivalent to the hand-crafted stateful schwa
deletion rule from [Choudhury and Basu, 2002]. For बचपन
⟨bachpan⟩ after the first pass, the output is [b@.Ù@.p@.n]:
the characters ब ⟨ba⟩ and प ⟨pa⟩ were processed using
RetainSchwa (schwa was retained) and the last character न
⟨na⟩ had its schwa deleted. In the second pass, the above rule
deletes the schwa after च ⟨cha⟩: thus producing the final cor-
rect output [b@.Ù.p@.n].

4 Experiments and Results
We evaluated ProLinguist with respect to a number of differ-
ent criteria:
(a) How does ProLinguist perform on data-sets where trans-

formations are for a single morphological/phonological
process? (Section 4.1)

(b) How does ProLinguist perform on noisy grapheme-to-
phoneme data-sets that include multiple processes? (Sec-
tion 4.2)

(c) Are the rules produced byProLinguist linguistically inter-
pretable, and does it lend itself to easy debugging? (Sec-
tion 4.3)

4.1 Textbook and Lexical problems
We evaluated ProLinguist on a variety of textbook and lexi-
cal problems [Odden, 2005; Gussenhoven and Jacobs, 2017;
Farmer and Demers, 2010] (these are the same datasets used
for the evaluation in SyPhon [Barke et al., 2019]). The inputs
in these tasks are pairs of words in their underlying and surface
forms, and the goal is to learn the phonological process for
the transformations. The ground truth rules for each of these
tasks was taken from [Barke et al., 2019]. Table 1 summa-
rizes the ProLinguist output for a subset of tasks. In the text-
book problems,ProLinguistwas able tomatch the accuracy of
SyPhon (both 100%). On the other hand, while for the flap-
ping problems, ProLinguist is able to converge to 100% ac-
curacy only with fewer examples as compared to SyPhon —
this is due to ProLinguist narrowing down on the context
[+stress]_[+syll] with just 20 examples. ProLinguist weights
the specificity of contexts significantly higher than SyPhon.
In terms of performance, ProLinguist takes between 30 and
170 seconds to learn the rules for the above data-sets as com-
pared to the 5–30 seconds for SyPhon and 1-2 hours for [Ellis
et al., 2015]. The slow down as compared to SyPhon can be
mostly attributed to ProLinguist using FlashMeta for data-
driven deduction-style synthesis as opposed to SMT solving,
which is more efficient. However, FlashMeta allows for more
expressive and easily customizable DSLs.

4.2 Grapheme to Phoneme Tasks
Our second set of experiments pertain to grapheme-to-
phoneme transformation (G2P). All G2P experiments were

Figure 1: WER, PER for Hindi and Tamil data sets with varying training data sizes.
Legend: • ProLinguist ♦ Phonetisaurus ■ Sequitur ▲ CMU Sphinx

Data Set Rules learnt by ProLinguist

1 English flap-
ping

 +ant
−voi

−del. rel

 →
[
+voi

]
/
[
+stress

]
_
[
+syll

]
2 Russian

[
−son

]
→

[
−voi

]
/_#

3 Scottish
[
+syll

]
→

[
+long

]
/_

+cons
+voi
+cont

4 Korean

[
−cont
−voi

]
→

[
−c.g.
−s.g.

]
/_

[
+c.g.

]
5 Hungarian

[
−son

]
→

[
αvoi

]
/_

[
αvoi

]
6 Kishambaa

[
+nas

]
→

[
−voi

]
/_

[
+s.g.

]
7 English Past ∅ → ⟨e⟩/C_# C → CC/V_

8 English
Cont. ⟨e⟩ → ∅/_# ⟨i⟩ → ⟨y⟩/C_

9 Tohono
O’odham ⟨s⟩ → ⟨s⟩̣/_V ⟨r⟩ → ⟨d⟩̣/_V

Table 1: Rules learnt for lexical and textbook problems

performed on Hindi and Tamil datasets, each containing
25000 words and their corresponding phonetic transcriptions
in IPA. The datasets were automatically generated by running
G2P converters currently being used in commercial TTS sys-
tems on frequently occurring words of the languages. We dis-
covered transcription errors in around 10%of the cases, which
were isolated using heuristic rules. Each dataset was then split
into two sets: one containing the correct phonetic transcrip-
tions, and the other with erroneous ones. We use the correct
set for doing performance and accuracy evaluation and inter-
pretability studies, while using the combined set for debugga-
bility studies (Sec 4.3).
Data. We vary the training data size in the range
{100, 200, 500, 1000, 2000, 5000, 10000}. We create 10 dif-
ferent train-test splits with random seeds 1 to 10 for each
data size. The number of tokens varies from 1100 to
120000 for data sizes of 100 and 10000 words respectively.
ProLinguist takes 20−40 seconds for smaller data-sets (100-
200), 2−8minutes for data-set of size 500, and about 3 hours
for the largest data-set (10000). However, as can be seen from
Table 1, the accuracy of ProLinguist saturates at 500 exam-
ples in the experiments.
Methods. For this task, we compare ProLinguist with
three open-source G2P tools: Sequitur [Bisani and Ney,
2008] which is a statistical model, CMU Sphinx [CMU,
2018] which is an LSTMbasedmodel and Phonetisaurus [No-
vak et al., 2012] which is a WFST based model. Note that un-
like the other three systems, ProLinguist has access to domain
knowledge through the DSL.

Language Rules learnt by ProLinguist

Hindi
Schwa

/@/ → @/_CC /@/ → @/#C_

/@/ → @/_
[
full vowels

]
/@/ → ∅/_#

/@/ → ∅/(!DeleteSchwa)C_CV
/@/ → ∅/RetainSchwa_RetainSchwa

Hindi
Anuswara

⟨.n⟩ → ŋ/_
[
velar

]
⟨.n⟩ → ñ/_

[
palatal

]
⟨.n⟩ → ï/_

[
retroflex

]
⟨.n⟩ → n/_

[
dental

]
⟨.n⟩ → m/_

[
labial

]
Tamil
Schwa

/@/ → ∅/_V /@/ → ∅/_⟨.n⟩

Tamil
Voicing

[
−voi

]
→

[
+voi

]
/V_

[
+voi

]
→

[
−voi

]
/#_[

−voi
]
→

[
+voi

]
/
[
+nasal

]
_

Table 2: Inferred G2P rules for Hindi and Tamil

Metrics. We use two evaluation metrics: Word Error Rate
(WER) and Phoneme Error Rate (PER). LetW be the set of all
words in the test set andP be the total number of phones in the
transcription of all words inW . For a given word w ∈ W , let
ĝ(w) and g∗(w) indicate the predicted and gold transcriptions
of the word w respectively. The metrics are defined as:

WER =
|{w ∈ W | ĝ(w) ̸= g∗(w)}|

|W |

PER =

∑
w∈W EditDistance(ĝ(w), g∗(w))

P
Figure 1 shows the WER and PER numbers for Hindi and

Tamil. As we can see, the performance ofProLinguist is com-
parable to Phonetisaurus and CMU Sphinx when the train-
ing data size is large. However, for small training data,
ProLinguist outperforms all other methods by a significant
margin. For instance, with just 100 training examples in
Hindi, ProLinguist achieves a WER of 10.4%, as compared
to 47.85% with Phonetisaurus.

Thus, with appropriate domain knowledge,
ProLinguist can be guided to learn linguistically sensi-
ble and general rules from a handful of examples. This is
especially beneficial for endangered and minority languages,
where procuring large amounts of labeled examples is diffi-
cult, but designing a DSL might be easy due to availability
of linguistic documentation for this or other typologically
similar languages. This property of ProLinguist makes
it a suitable choice for field linguists, who might want to
instantly discover rules and exceptions from small amounts of
linguistic data, and conduct a more informed data collection.

Inputs covered (%) 20 40 60 80 95 100

Rules required (Hindi) 2 4 5 8 14 54
Rules required (Tamil) 1 3 5 9 30 96

Table 3: Coverage of synthesized programs.

4.3 Intrepretability and Debuggability
ProLinguist synthesized on an average 60 and 100 programs
for Hindi and Tamil respectively for the input size of 5000.
However, as Table 3 shows the top 8 − 9 rules cover 80%
of the input words. A manual examination of the top 8 − 9
rules showed that they correspond to well-known phonolog-
ical rules in the languages, such as the anuswara rules and
the schwa retention or obligatory deletion rules as described
in Sec 2. The ⟨.n⟩ → ŋ/_ [velar] rule applies to around
6% of the examples, which makes it quite a generic rule.
ProLinguist also learns the multi-pass schwa deletion rule,
as described in Ohala (1983). For Tamil, a top rule that
ProLinguist outputs is:

[+voi] → [−voi] /#_ [half vowels]
A linguist could interpret this rule as “the consonants at the be-
ginning of the word that are followed by the inherent vowel
schwa are rendered unvoiced.” In short, ProLinguist is able to
discover all the well-documented phonological rules of these
two languages with only a 100− 200 examples and a linguis-
tically grounded DSL. We highlight some of the major rules
synthesized by ProLinguist in the Appendix.
Debugging. ProLinguist enables debugging by automatically
identifying outliers. In addition to the outliers returned by Al-
gorithm 1, words that are processed by rules that apply in very
few cases are also of interest for debugging. We examined
both these types of words in the Hindi and Tamil G2P dataset,
and manually categorized them into three different kinds.
Noisy Data. ProLinguist discovered 2 such cases: (1) Incon-
sistent Chandra-bindu handling. The chandra-bindu diacritic
in Hindi forces the previous vowel to be nasalized. In the data,
this nasalization was done inconsistently for a small fraction
of the cases. (2) Inconsistent schwa insertion in Tamil. Sim-
ilarly, in certain contexts in Tamil an extra (incorrect) schwa
was inserted. ProLinguist again learnt a rule to insert this in-
correct schwa, but the rule fired in very few instances, mark-
ing them as outliers. These were previously unknown limita-
tions of the commercial TTS system we used for generating
the train-test data.
Loan words. Words borrowed from other languages often
have pronunciations that differ from the norm. For example,
in the loan word हलैो ⟨hailo⟩ in Hindi (corresponding to the
English word “hello”) the◌ै⟨ai⟩ is pronounced as /e/ instead
of /E/ as in all native Hindi words.
Known Exceptions. Every language has some known excep-
tions. For instance, in Hindi, schwa is usually pronounced as
/@/. However, in certain rare cases, it is pronounced /e/ (for
example, in the word शहर ⟨shahar⟩ 7→ [Se.he.r]). These ex-
ceptions are also identified by ProLinguist as outliers.

This ability to identify and flag inconsistencies and rarely
used rules is an extremely useful facet of ProLinguist. Some
of the issues flagged above are extremely hard to discover
manually.

4.4 Current limitations
• The running time of ProLinguist increases significantly
if a large number of overlapping features are provided.
One solution to this problem is to explore the clusters in
a ranked fashion during synthesis. We leave this exten-
sion to future work.

• ProLinguist outputs rules in the DSL specified in Sec-
tion 3. However, these programs can be rewrit-
ten into SPE notation easily. While this post-
processing is currently manual, we intend to au-
tomate this in the future. For example, one of
the Hindi anusvara rules from Table 2 is produced
as if(hasFeature(relPos(token, 1), [palatal])
replaceBy(token, ⟨.n⟩, /ñ/), and is rewritten as
shown in the table.

5 Related Work and Discussion
Machine learning, and particularly deep learning, is the popu-
lar approach to most NLP problems these days. For instance,
G2P systems have been built using CRFs [Wang and King,
2011; Lehnen et al., 2013], and LSTMs [Rao et al., 2015;
Yao and Zweig, 2015; Jyothi and Hasegawa-Johnson, 2017].
Nevertheless, rule-based systems are also central to several
NLP tasks such as text normalization, G2P and morphologi-
cal analysis, where rules already exist or are easy to design by
experts.

Deterministic Finite Automata (DFA) are the early rule-
learning systems [Casacuberta and Vidal, 2004; Beesley and
Karttunen, 2003; Mohri and Sproat, 1996] that can be trained
with positive training examples. DFAs have been used in
learning rules for G2P [Novak et al., 2012] and morphol-
ogy [Karttunen and Beesley, 2005]. Statefulness of DFAs
provide them sufficient power for representing many linguis-
tic phenomena; however, it is difficult to encode linguistic
insights during DFA training.

Decision Trees are a very powerful technique that can
learn interpretable if-then-else rules. They have been success-
fully employed in G2P [Andersen et al., 1996; Suontausta
and Häkkinen, 2000], text normalization [Raj et al., 2007],
prosodic modeling [Lee and Oh, 1999], etc. However, by
their very nature, they are state-less classifiers. Modeling
statefulness is difficult, though can be done through appro-
priate feature engineering.

Our method is complementary to the above approaches. A
program can be thought of as a DFA, a sequence of if-then-
else statements, ranking of constraints, and a combination of
any or all of these. In that sense, program synthesis makes
little assumptions about the nature of the underlying linguistic
phenomena. It is the DSL that provides cues on what are more
likely transformations. The higher level of abstraction used by
ProLinguist is advantageous on many fronts: amount of data
required, interpretability, debugging, and customizability. We
believe that our proposed techniques can be used in parallel to
machine learning techniques to add a layer of interpretability.

[Brill, 1995] presents an iterative rule-based learning sys-
tem to minimize the error in local labelling assuming that
neighbors are tagged correctly. The process works by enu-
merating over all transformations and finding the best context

to apply it under. The process is Markovian, i.e., the context
is given by a single preceding token, and hence, can be enu-
merated over. In contrast, our work uses a sophisticated pro-
gram synthesis technique to generate both the transformation
as well as the context.

A closely related recent work is SyPhon [Barke et al.,
2019] where the authors use constraint-solving based program
synthesis to generate rules for phonological processes. This
technique is more suited towards noise-free single process
tasks with no rule interaction, making the synthesis very effi-
cient. On the other hand, our techniques are mostly focused
on handlingmultiple processes at once using interacting rules.
Additionally, SyPhon is restricted to contexts of size 1 while
the FlashMeta synthesis framework allows us to handle larger
and non-standard contexts.

[Şahin et al., 2020] introduced a dataset where the rules
have to be inferred from a very few (typically 5-15) exam-
ples. We believe ProLinguist can solve these problems where
the DSL contains the appropriate meta-linguistic information
which the authors mention as a necessity.

6 Conclusion
We propose a novel program synthesis based technique
ProLinguist to generate phonological rules. We have demon-
strated the effectiveness of the technique in producing re-
sults from small amounts of training data, while providing
additional value in the form interpretability and debuggabil-
ity. ProLinguist can be used to learn interpretable rules even
from larger datasets in a scalable way. These results suggest
a novel way of combining large uninterpretable models with
rule-based systems, by using ProLinguist as an aid in under-
standing, maintaining, and debugging neural network based
models. In the future, we intend to conduct a study into the
benefits of using ProLinguist in this manner. Further, we be-
lieve that a similar ProLinguist-like system can be used for
other NLP tasks such as transliteration and text normalization,
and intend to fully explore these possibilities.

References
[Alur et al., 2013] Rajeev Alur, Rastislav Bodík, Garvit Ju-

niwal, Milo M. K. Martin, Mukund Raghothaman, San-
jit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis.
In Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 2013, pages 1–
8, 2013.

[Andersen et al., 1996] Ove Andersen, Roland Kuhn, Ari-
ane Lazarides, Paul Dalsgaard, Jürgen Haas, and Elmar
Noth. Comparison of two tree-structured approaches
for grapheme-to-phoneme conversion. In Proceeding
of Fourth International Conference on Spoken Language
Processing. ICSLP’96, volume 3, pages 1700–1703. IEEE,
1996.

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[Barke et al., 2019] Shraddha Barke, Rose Kunkel, Nadia
Polikarpova, Eric Meinhardt, Eric Bakovic, and Leon
Bergen. Constraint-based learning of phonological pro-
cesses. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6177–6187, 2019.

[Beesley and Karttunen, 2003] Kenneth R Beesley and Lauri
Karttunen. Finite-state morphology: Xerox tools and tech-
niques. CSLI, Stanford, 2003.

[Bisani and Ney, 2008] Maximilian Bisani and Hermann
Ney. Joint-sequence models for grapheme-to-phoneme
conversion. Speech Communication, 50(5):434–451,
2008.

[Brill, 1995] Eric Brill. Transformation-based error-driven
learning and natural language processing: A case study
in part-of-speech tagging. Computational Linguistics,
21(4):543–565, 1995.

[Casacuberta and Vidal, 2004] Francisco Casacuberta and
Enrique Vidal. Machine translation with inferred stochas-
tic finite-state transducers. Computational Linguistics,
30(2):205–225, 2004.

[Chomsky and Halle, 1968] Noam Chomsky and Morris
Halle. The sound pattern of English. Studies in language.
Harper & Row, 1968.

[Chopde, 2001] Avinash Chopde. Itrans: Indian languages
transliteration, 2001.

[Choudhury and Basu, 2002] Monojit Choudhury and Anu-
pam Basu. A rule-based schwa deletion algorithm for
Hindi. In Proc. International Conference On Knowledge-
Based Computer Systems, 2002.

[Choudhury, 2003] Monojit Choudhury. Rule-based
grapheme to phoneme mapping for Hindi speech syn-
thesis. In 90th Meeting of the Indian Science Congress
Association (ISCA), 2003.

[CMU, 2018] CMU. Sequence-to-sequence g2p toolkit.
https://github.com/cmusphinx/g2p-seq2seq,
2018.

[Ellis et al., 2015] Kevin Ellis, Armando Solar-Lezama, and
Joshua B. Tenenbaum. Unsupervised learning by program
synthesis. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 973–981, 2015.

[Farmer and Demers, 2010] Ann Kathleen. Farmer and
Richard A. Demers. A Linguistics Workbook: Companion
to Linguistics. The MIT Press, 6 edition, 2010.

[Gulwani et al., 2017] Sumit Gulwani, Oleksandr Polozov,
and Rishabh Singh. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017.

[Gulwani, 2011] Sumit Gulwani. Automating string pro-
cessing in spreadsheets using input-output examples. In
Thomas Ball and Mooly Sagiv, editors, Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 317–330. ACM, 2011.

[Gussenhoven and Jacobs, 2017] Carlos Gussenhoven and
Haike Jacobs. Understanding Phonology. Routledge,
2017.

[Iyer et al., 2019] Arun Iyer, Manohar Jonnalagedda, Suresh
Parthasarathy, Arjun Radhakrishna, and Sriram Rajamani.
Synthesis and machine learning for heterogeneous extrac-
tion. In Proceedings of PLDI. ACM, 2019.

[Jyothi and Hasegawa-Johnson, 2017] Preethi Jyothi and
Mark Hasegawa-Johnson. Low-resource grapheme-to-
phoneme conversion using recurrent neural networks. In
2017 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2017, New Orleans, LA,
USA, March 5-9, 2017, pages 5030–5034. IEEE, 2017.

[Karttunen and Beesley, 2005] Lauri Karttunen and Ken-
neth R Beesley. Twenty-five years of finite-state morphol-
ogy. Inquiries IntoWords, a Festschrift for KimmoKosken-
niemi on his 60th Birthday, pages 71–83, 2005.

[Knight and Graehl, 1998] Kevin Knight and Jonathan
Graehl. Machine transliteration. Computational linguis-
tics, 24(4):599–612, 1998.

[Knight, 2007] Kevin Knight. Capturing practical nat-
ural language transformations. Machine Translation,
21(2):121–133, 2007.

[Lee and Oh, 1999] Sangho Lee and Yung-Hwan Oh. Tree-
based modeling of prosodic phrasing and segmental du-
ration for korean tts systems. Speech Communication,
28(4):283–300, 1999.

[Lehnen et al., 2013] Patrick Lehnen, Alexandre Allauzen,
Thomas Lavergne, François Yvon, Stefan Hahn, and Her-
mann Ney. Structure learning in hidden conditional ran-
dom fields for grapheme-to-phoneme conversion. In
Frédéric Bimbot, Christophe Cerisara, Cécile Fougeron,
Guillaume Gravier, Lori Lamel, François Pellegrino, and
Pascal Perrier, editors, INTERSPEECH 2013, 14th An-
nual Conference of the International Speech Communica-
tion Association, Lyon, France, August 25-29, 2013, pages
2326–2330. ISCA, 2013.

[Linzen, 2020] Tal Linzen. How can we accelerate progress
towards human-like linguistic generalization? In Pro-
ceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5210–5217, Online, July
2020. Association for Computational Linguistics.

[Microsoft, 2015] Microsoft. Microsoft program synthesis
using examples sdk, 2015.

[Mohri and Sproat, 1996] Mehryar Mohri and Richard
Sproat. An efficient compiler for weighted rewrite rules.
In Proceedings of the 34th annual meeting on Associ-
ation for Computational Linguistics, pages 231–238.
Association for Computational Linguistics, 1996.

[Novak et al., 2012] Josef R. Novak, Nobuaki Minematsu,
and Keikichi Hirose. Wfst-based grapheme-to-phoneme
conversion: Open source tools for alignment, model-
building and decoding. In Iñaki Alegria and Mans Hulden,

editors, Proceedings of the 10th International Workshop
on Finite State Methods and Natural Language Process-
ing, FSMNLP 2012, Donostia-San Sebastiían, Spain, July
23-25, 2012, pages 45–49. The Association for Computer
Linguistics, 2012.

[Odden, 2005] David Odden. Introducing Phonology. Cam-
bridge Introductions to Language and Linguistics. Cam-
bridge University Press, 2005.

[Ohala, 1983] Manjari Ohala. Aspects of Hindi phonology.
Motilal Banarsidass, Delhi, 1983.

[Polozov and Gulwani, 2015] Oleksandr Polozov and Sumit
Gulwani. Flashmeta: a framework for inductive program
synthesis. In Jonathan Aldrich and Patrick Eugster, ed-
itors, Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, part of
SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015,
pages 107–126. ACM, 2015.

[Raj et al., 2007] Anand Arokia Raj, Tanuja Sarkar,
Sathish Chandra Pammi, Santhosh Yuvaraj, Mohit Bansal,
Kishore Prahallad, and Alan W Black. Text processing for
text-to-speech systems in indian languages. In Ssw, pages
188–193, 2007.

[Rao et al., 2015] Kanishka Rao, Fuchun Peng, Hasim Sak,
and Françoise Beaufays. Grapheme-to-phoneme conver-
sion using long short-term memory recurrent neural net-
works. In 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2015, South
Brisbane, Queensland, Australia, April 19-24, 2015, pages
4225–4229, 2015.

[Rolim et al., 2017] Reudismam Rolim, Gustavo Soares,
Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit
Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntac-
tic program transformations from examples. In Proceed-
ings of the 39th International Conference on Software En-
gineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017, pages 404–415, 2017.

[Şahin et al., 2020] Gözde Gül Şahin, Yova Kementched-
jhieva, Phillip Rust, and Iryna Gurevych. PuzzLing Ma-
chines: A Challenge on Learning From Small Data. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 1241–1254, Online,
July 2020. Association for Computational Linguistics.

[Singh and Gulwani, 2012] Rishabh Singh and Sumit Gul-
wani. Synthesizing number transformations from input-
output examples. In Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA,
July 7-13, 2012 Proceedings, pages 634–651, 2012.

[Solar-Lezama et al., 2005] Armando Solar-Lezama, Ro-
dric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu.
Programming by sketching for bit-streaming programs.
In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 281–294,
2005.

[Suontausta and Häkkinen, 2000] Janne Suontausta and Juha
Häkkinen. Decision tree based text-to-phoneme mapping
for speech recognition. In Sixth International Conference
on Spoken Language Processing, 2000.

[Wang and King, 2011] DongWang and SimonKing. Letter-
to-sound pronunciation prediction using conditional ran-
dom fields. IEEE Signal Process. Lett., 18(2):122–125,
2011.

[Yao and Zweig, 2015] Kaisheng Yao and Geoffrey Zweig.
Sequence-to-sequence neural net models for grapheme-to-
phoneme conversion. In INTERSPEECH 2015, 16th An-
nual Conference of the International Speech Communi-
cation Association, Dresden, Germany, September 6-10,
2015, pages 3330–3334, 2015.

Appendix
A Synthesized G2P Rules
Wemention some of the prominent G2P rules whichwere syn-
thesized and sorted by frequency of occurrence of the rule.
Some of these rules are state-full rules and should be inter-
preted as

A → B/Pred_
A is transformed to B if the left context was transformed by a
Boolean Pred.

A.1 For Hindi
We provide the rules inferred for Hindi and the tokens covered
by them.

Rules Tokens covered

/@/ → ∅/_V 19401
/@/ → ∅/_# 4930
/@/ → @/#_C 3265
/@/ → @/⟨.h⟩_C 772
⟨.n⟩ → η/_[retroflex] 317
/l@/ → l/[high vowel]_[dental] 31
/h@/ → h/C_ 20
/@/ → ∅/DeleteSchwa_RetainSchwa 20

Table 4: Hindi G2P Rules

A.2 For Tamil
Weprovide the rules inferred for Tamil and the tokens covered
by them.

Rules Tokens covered[
+voi

]
→

[
−voi

]
/_⟨.n⟩ 15120[

−voi
]
→

[
+voi

]
/

{
V
C

}
_

{
V
C

}
3423[

+voi
]
→

[
−voi

]
/#_V 2769[

+voi
]
→

[
−voi

]
/_# 278[

+voi
]
→

[
−voi

]
/[vallinum]⟨.n⟩_DeleteSchwa 200

⟨ch⟩ → s@/#_DeleteSchwa 82

Table 5: Tamil G2P Rules

B Other Synthesized Rules
The rules mentioned are for English Past Tense and English
Continuous. Suffixes ⟨d⟩ and ⟨ing⟩ are dropped. We infer the
rules after reducing the transformation to its root form. We
mention the rules which require insertion of ⟨e⟩ or duplicate
the last character A → AA/X_Y.

Problem Rules

English Past Tense ∅ → ⟨e⟩/C_#
C → CC/V_

English Continuous ⟨e⟩ → ∅/_#
⟨i⟩ → ⟨y⟩/C_

Japanese /t/ → d/C_

Table 6: Synthesized Rules for Other Problems

