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Abstract

Natural language inference (NLI) — sometimes re-
ferred to as textual entailment — is a fundamen-
tal task in natural language processing. Most ap-
proaches for solving this problem are driven by the
natural language text provided for training. How-
ever, external knowledge sources such as Concept-
Net, DBpedia can add value by enhancing the se-
mantics of text for this task. In this talk, I will fo-
cus on techniques that can leverage external knowl-
edge for Natural Language Inference. Particularly,
the talk will cover an initial framework that can
integrate both text based and external knowledge
based models, with emphasis on different ways of
effectively exploit external knowledge. We eval-
uate our approach on multiple textual entailment
datasets and show that the use of external knowl-
edge helps the model to be robust and improves
prediction accuracy

1 Introduction

Given two natural language sentences, a premise P and a hy-
pothesis H, the textual entailment task — also known as natural
language inference (NLI) — consists of determining whether
the premise entails, contradicts, or is neutral with respect to
the given hypothesis [MacCartney and Manning, 2009]. In
practice, this means that textual entailment is characterized as
either a three-class (ENTAILS/NEUTRAL/CONTRADICTS) or a
two-class (ENTAILS/NEUTRAL) classification problem [Khot
et al., 2018b; Bowman et al., 2015].

Performance on the textual entailment task can be an in-
dicator of whether a system, and the models it uses, are able
to reason over text. This has tremendous value for modeling
the complexities of human-level natural language understand-
ing, and in aiding systems tuned for downstream tasks such
as question answering [Harabagiu and Hickl, 2006].

Most existing textual entailment models focus only on
the text of the two sentences to improve classification accu-
racy [Parikh er al., 2016; Zhang et al., 2018; Liu et al., 2019].
A recent and promising line of work has turned towards ex-
tracting and harnessing more contextually relevant semantic
information from knowledge graphs (KGs) for each textual
entailment pair [Wang er al., 2019; Kapanipathi ef al., 2020].

P: A young barefoot girl in a pink
dress is jumping outside.
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Figure 1: A premise and hypothesis pair along with a relevant sub-
graph from ConceptNet. Blue concepts occur in the premise, green
in the hypothesis, and purple connect them.

These approaches map terms in the premise and hypothesis
text to concepts in a KG, such as Wordnet [Miller, 1995] or
ConceptNet [Speer ef al., 2017] and use information of these
mapped concepts for the textual entailment task. Figure 1
shows an example of such mapping, where select terms from
the premise and hypothesis are mapped to concepts from a
knowledge graph (blue and green nodes, respectively). This
talk will focus on these two approaches that can be catego-
rized into a generic framework where text-based models are
augmented with external knowledge sources for better perfor-
mance on NLI task.

These two approaches aim to address the following chal-
lenges in using external knowledge bases for NLI: (a) deter-
mining the relevant external knowledge source to use; (b) ex-
tracting relevant information from large and noisy KGs; (c)
effectively leveraging both the semantic and structural infor-
mation from KGs.

2 Framework and Approaches

In this section, we describe the central contribution of this
paper — the KG-augmented Entailment System (KES). As
shown in Figure 2, KES consists of two main components.
The first component is a standard text encoder that creates a
fixed-size representation of the premise and hypothesis texts.
The second component selects contextual subgraphs for the
premise and the hypothesis from a given KG, and encodes



them using multiple different techniques as detailed in be-
low subsections. The final layers of the two components are
used as input to a standard feedforward layer for classifica-
tion. We opted for a combined graph and text approach be-
cause the noise and incompleteness of KGs renders a purely
graph-based approach insufficient as a standalone solution.
However, we show that the KG-augmented model provides
valuable context and additional knowledge that may be miss-
ing in text-only representations.

2.1 ConSeqNet

Challenges: (1) Many external knowledge sources are avail-
able and choosing one that is appropriate for a given NLI
dataset is non-trivial; (2) a general framework for augmenting
text-based models with external knowledge is needed, as ex-
isting NLI approaches that use external knowledge are tightly
tuned to one specific KG.

Contributions: The ConSeqNet framework enables the use
of various kinds of external knowledge bases to retrieve
knowledge relevant to a given NLI instance, by retrieving in-
formation related to the premise and hypothesis. We describe
our novel architecture and demonstrate its use with a specific
external knowledge source — ConceptNet — and evaluate its
performance on two other sources, WordNet and DBpedia.
We compare the performance of three distinct approaches to
augmenting the knowledge used to train for and to predict
entailment relationships between given pairs of premises and
hypotheses:graph-only, text-only, and text-and-graph. Using
both qualitative and quantitative results, we demonstrate that
introducing graph-based features boosts performance on the
NLI problem, but only when text features are present as well.
Our system has a competitive performance (accuracy) of 85.2
(Table 1).

2.2 KG augmented Entailment System (KES)

Challenges: (1) ConSeqNet and existing KG-based models
do not possess the ability to select and harness semantic and
structural information from the KG. For example, in Figure 1,
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Model Dev  Test
Decomp-Attn [Parikh et al., 2016] 754 723
DGEM?* [Khot et al., 2018a] 79.6 773
DelsTe [Yin et al., 2018] 824 82.1

BiLSTM-Maxout [Mihaylov et al., 2018] - 84.0
match-LSTM [Wang and Jiang, 2015] 88.2 84.1

Our implementation

match-LSTM (GRU) 88.5 84.2
match-LSTM+WordNet* [?] 88.8 843
match-LSTM+Gmatch-LSTM* () 89.6 85.2

Table 1: Performance of entailment models on SciTail in compar-
ison to our best model that uses match-LSTM as the text and the
graph model with Concepts Only graph and CN-PPMI embeddings.
* indicates the use of external knowledge in the approach.

the ability for models to encode information from paths be-
tween blue and green nodes via purple nodes provides better
context facilitating the system to more correctly judge entail-
ment. (2) They are not easily integrated with existing NLI
models that exploit only the text of the premise and hypoth-
esis. (3) They are not flexible with respect to the type of KG
that is used.

Contributions: We present an approach to the NLI problem
that can augment any existing text-based entailment model
with external knowledge. Our approach has two major in-
novations. First, we introduce a neighbor-based expansion
strategy in combination with subgraph filtering using Person-
alized PageRank (PPR) [Jeh and Widom, 2003]. This ap-
proach reduces noise and selects contextually relevant sub-
graphs for premise and hypothesis texts from larger exter-
nal knowledge source. Second, we encode subgraphs using
Graph Convolutional Networks (GCNs) [Kipf and Welling,
20171, which are initialized with knowledge graph embed-
dings to capture structural and semantic information. This
general approach to graph encoding allows us to use any ex-
ternal knowledge source that can be represented as a graph
such as WordNet, ConceptNet, or DBpedia [Lehmann er al.,
2015]. We show that the additional knowledge can improve
textual entailment performance by using four standard bench-
marks: SciTail, SNLI, MultiNLI, and BreakingNLI. In partic-
ular, our experiments on the BreakingNLI dataset [Glockner
et al., 2018], where we see an absolute improvement of 5-
20% over four text-based models, shows that our technique is
robust and resilient (Table 2).
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