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NLP circa 2014: symbolic

: “... Water is split, providing a source of elec-
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gtrons and protons (hydrogen ions, H") and
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Step 3: Answer =b

Q What can the splitting of water lead to? :
a Light absorption :
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[Berant et al., 2014]
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NLP in 2021: not very symbolic

Paragraph A, Return to Olympus:

[1] Return to Olympus is the only album by the alterna-
tive rock band Malfunkshun. [2] It was released after
the band had broken up and after lead singer Andrew
Wood (later of Mother Love Bone) had died of a drug
overdose in 1990. [3] Stone Gossard, of Pearl Jam, had
compiled the songs and released the album on his label,
Loosegroove Records.

Paragraph B, Mother Love Bone:

[4] Mother Love Bone was an American rock band that
formed in Seattle, Washington in 1987. [5] The band
was active from 1987 to 1990. [6] Frontman Andrew
Wood’s personality and compositions helped to catapult
the group to the top of the burgeoning late 1980s/early
1990s Seattle music scene. [7] Wood died only days be-
fore the scheduled release of the band’s debut album,
“Apple”, thus ending the group’s hopes of success. |[8]
The album was finally released a few months later.

Q: What was the former band of the member of Mother
Love Bone who died just before the release of “Apple”?

[Yang et al., 2018]
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“Apple”, thus ending the group’s hopes of success. |[8]
The album was finally released a few months later.

Q: What was the former band of the member of Mother
Love Bone who died just before the release of “Apple”?

* malfunkshun

[Yang et al., 2018]



Symbolic vs. Neural Approaches in NLP

* Fully neural approaches have become the de-facto standard:
e Why?

* It works: training end-to-end differentiable networks
with backpropagation (especially given pre-training)

* EXxpressive: interactions between inputs are learned
and not pre-specified

* Simple: No need to design meaning representations
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Symbolic vs. Neural Approaches in NLP

Given enough (x,y) pairs we can use supervised learning on the training set and obtain
good i.i.d generalization

e So what doesn’t work?

e Qut-of-distribution generalization: adversarial
examples, domain generalization, etc.

e Few-shot

e |nterpretability



Plan: discuss in the context of answering complex questions

e Symbolic structures for compositional generalization

 Symbolic structures for evaluating model robustness
through automatic example generation



(Generalization
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» Well-defined: all atoms and operations at test time should
appear at training time

* Humans can do it (Fodor and Pylyshyn, 1988)
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Standard architectures fail at compositional generalization

Improving Text-to-SQL Evaluation Methodology Finegan-Dollak et al., 2018

Measuring Compositional Generalization Keysers et al.,, 2020

SQOOP/SCAN L ake and Baroni, 2018 / Bahdanau et al., 2019
CLEVR/CLOSURE Johnson et al.,, 2017 / Bahdanau et al., 2019

What is the shape of the
large thing that is on the
right side of the metallic
cube?




Standard architectures fail at compositional generalization

Improving Text-to-SQL Evaluation Methodology Finegan-Dollak et al., 2018

Measurin . .fs T
Measuring Compositional Generalization in X

SQOOP/S 2019

Homer Simpson
CLEVR/CI University of Springfield 019
742 evergreen terrace
homers@springfield.edu

 People can compositionally generalize (Fodor
and Pylyshyn, 1988).

e we create a bechmark to test whether models
can compositionally generalize in X.

e We find out current models do not composi-
tionally generalize in X.

Iarge unirig triat 1s Orl trie
right side of the metallic
cube?




Standard architectures fail at compositional generalization

Improving Text-to-SQL Evaluation Methodology Finegan-Dollak et al., 2018

Measurin . .fs T
Measuring Compositional Generalization in X

SQOOP/S 2019
Homer Simpson

CLEVR/CI University of Springfield 019
742 evergreen terrace

homers@springfield.edu

Can we improve compositional generalization
with a tree-based model?

* People .
and Pylyshyn, 1988).

v O

e we create a bechmark to test whether models
can compositionally generalize in X.

e We find out current models do not composi-
tionally generalize in X.

Iarge unirig triat 1s Orl trie
right side of the metallic
cube?
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Latent compositional
representations improve
systematic generalization In
grounded question answering
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Setup: visual question answering

What is the shape of the large thing that is on the right
side of the metallic cube and left of the green sphere?

cylinder

Only source of the supervision is the final answer




Compositional model (CKY)

1]]3

e Compute span representations and denotations recursively

 End-to-end differentiable: learn from downstream supervision

tiny shiny sphere
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Compositional model (CKY)

1]]3

e Compute span representations and denotations recursively

* End-to-end differentiable: learn from downstream supervision
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e Compute span representations and denotations
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 End-to-end differentiable: learn good representations by
training from downstream supervision only (neural)
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Desired model properties
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Grounded Latent Trees (GLT):

1. Compute a representation () and denotation (|4|) for
spans of length 1, then length 2, etc. (CKY)

2. Take the representation and denotation of the entire
sentence (“the root”) and predict the answer
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Grounded Latent Trees (GLT):

1. Compute a representation () and denotation (|4|) for
spans A

Information flow is more restricted than a transformer

2. Take the representation and denotation of the entire
sentence (“the root”) and predict the answer

small




Evaluation: CLEVR, CLOSURE, CLEVR-Humans

* CLEVR: synthetic questions over synthetic images

« CLOSURE: synthetic questions over new compositions

* CLEVR-I
images

umans.

luman-authored questions over CLEVR



Evaluation: CLEVR, CLOSURE
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Evaluation: CLEVR-Humans
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Interpretability
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Span-based Semantic
Parsing for Compositional
Generalization




Span-based semantic parsing
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Span-based semantic parsing
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Summary

early 2016 What’s here? late 2016

Type.City M PeopleBornHere.BarackObama X Y 2 <eos>
//?/ersek\\
what  Type.CityTown  was PeopleBornHere.BarackObama ? _ 9
join °
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city BarackObama  PeopleBornHere
Alignment Alignment
Obams bort Simple, general, flexible! Y

But it does not compositionally generalize
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The method spectrum of compositional generalization

Change model

Latent trees

Bogin et al., 2021; Herzig
and Berant, 2021; Shaw et

al., 2021

Latent alignments

Wang et al., 2021; Akyurek

and Andreas, 2021; Yin et
al, 2021
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The method spectrum of compositional generalization

Change model

Change training

Change data

Latent trees

Bogin et al., 2021; Herzig
and Berant, 2021; Shaw et

al., 2021

Supervise attent.
[Oren et al. 2020, Yin et
al., 2021]

Data augment.
Andreas, 2020; AkyUrek et
al., 2021

Latent alignments

Wang et al., 2021; Akyurek

and Andreas, 2021; Yin et
al, 2021

Meta-learning

2021

Lake, 2019; Conklin et al.,

Scale data
Tsarkov et al, 2021, Furrer
et al., 2021




The method spectrum of compositional generalization

Change model Change training Change data
oot S0 Hors Supervise attent. Data augment.
anc? Berant. 2021 Shawget [Oren et al. 2020, Yin et Andreas, 2020; Akyiirek et
al, 2021 al., 2021] al., 2021

Latent alignments Meta-learning Scale data

Wang et al., 2021; Akyurek Lake, 2019; Conklin et al Teark |, 2021, F

and Andreas, 2021: Yin et aKe, , Gonkiin et al., sarkov et al, , Furrer
o 2021 2021 et al., 2021

Currently there is still trade-off between performance and inductive bias, but...




Evaluating robustness by controlled generation from
symbolic representations



Evaluation crisis in NLP
MYINLPHAS




Perturbations for evaluations

New,
Expert  counterfactual
annotator datapoint If approved, new

datapoint is added
alongside the original
‘ sampled datapoint to
e \ create a new dataset.
—— R ., —
v v
—

Counterfactually
augmented
dataset

Original Sampled
dataset datapoint

From the first moment | felt bored o

|

From the first moment | felt absorbed (&)

[Kaushik, Hovy, and Lipton, 2020; Gardner et al, 2020]



Perturbations for evaluations

New,
Expert  counterfactual

annotator datapoint If approved, new
datapoint is added

alongside the original

‘ sampled datapoint to

create a new dataset.

~— - -
— ——
S
Original Sampled Counterfactually
dataset datapoint auc?mented
ataset
From the first moment | felt bored &

From the first moment | felt absorbed (&%

[Kaushik, Hovy, and Lipton, 2020; Gardner et al, 2020]

Original Example:

Two similarly-colored and similarly-posed
chow dogs are face to face in one image.

Example Textual Perturbations:

Two similarly-colored and similarly-posed
cats are face to face in one image.
Three similarly-colored and similarly-posed
chow dogs are face to face in one image.
Two differently-colored but similarly-posed

chow dogs are face to face in one image. |

Example Image Perturbation:

i Lo

Two S|m|IarIy colored and similarly-posed

chow dogs are face to face in one image.




Perturbations for evaluations

New,
Expert  counterfactual
annotator datapoint If approved, new

datapoint is added
alongside the original
‘ sampled datapoint to
create a new dataset.
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Original Samplgd tod
dataset datapoint auc?aTae:ete
From the first moment | felt bored e

From the first moment | felt absorbed (&%

[Kaushik, Hovy, and Lipton, 2020; Gardner et al, 2020]

Original Example:

Two similarly-colored and similarly-posed
chow dogs are face to face in one image.

Example Textual Perturbations:

Two similarly-colored and similarly-posed
cats are face to face in one image.
Three similarly-colored and similarly-posed
chow dogs are face to face in one image.
Two differently-colored but similarly-posed

chow dogs are face to face in one image. |

Example Image Perturbation:

Two S|m|IarIy-oIored and similarly-posed

chow dogs are face to face in one image.

oJole



Break, Perturb, Build: Automatic Perturbation of
Reasoning Paths through Question Decomposition

Mor Geva Tomer Wolfson




Getting control with structured meaning representations

Which gallery was founded later,
Hughes/Donahue or Art Euphoric?



Getting control with structured meaning representations

Which gallery was founded later,
Hughes/Donahue or Art Euphoric?

U

1. When was the Hughes/Donahue gallery founded?
eIl 7 \When was the Art Euphoric gallery founded?
3. Which is larger of #1 and #2?

Wolfson et al, 2020



Getting control with structured meaning representations

Which gallery was founded later,
Hughes/Donahue or Art Euphoric?

U

1. When was the Hughes/Donahue gallery founded?
eIl 7 \When was the Art Euphoric gallery founded?
3. Which is larger of #1 and #2?

-

easy to manipulate!

Wolfson et al, 2020



Getting control with structured meaning representations

Which gallery was founded later,
Hughes/Donahue or Art Euphoric?

When was the Hughes/Donahue
gallery founded?

Wolfson et al, 2020
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Getting control with structured meaning representations

Which gallery was founded later,
Hughes/Donahue or Art Euphoric?

U

1. When was the Hughes/Donahue gallery founded?
eIl 7 \When was the Art Euphoric gallery founded?
3. Which is4arger smaller of #1 and #2?

U

Which gallery was founded first,
Hughes/Donahue or Art Euphoric?

Wolfson et al, 2020

11



Example generation pipeline (reading comprehension)

question
answer

paragraph
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Example generation pipeline (reading comprehension)

%Break

answer

paragraph
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Example generation pipeline (reading comprehension)

Break
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<

answer
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| QDMR

paragraph
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Example generation pipeline (reading comprehension)

Break Kaerb
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15



Example generation pipeline (reading comprehension)

Break
703
% > =
uestion palelellilsle new
. . QDMR question

answer

SQUAD %;
paragraph + BoolQ "= «bﬁ

Kaerb

answer
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Generated example from HotpotQA

question
+ answer

QDMR

modified
QDMR

question
+ answer

How many novels are there in the series of novels of which
Shadows in Flight is the tenth novel?

. series of novels of which Shadows in Flight is the tenth novel
. novels in #1
. number of #2

. series of novels of which Shadows in Flight is the tenth novel

. hovels in #1
. number of #2
. if #3 is equal to 23

If Shadows in Flight is the tenth novel in a series of 23 novels?

fifteen

17



Observations

Depends only on the question

-

Kaerb h

modiﬂed\
O]B]\V/I%¢ question

answer

paragraph

Applicable to other modalities (video, image, table) s



Observations

question modified \

O]B]\V/I%¢ question

AnsSwer answer

paragraph

QDMR parsers, question generators, and reading comprehension work! o



The generated examples cover most of the original datasets

DROP HotpotQA lIRC
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The vast majority of generated examples is valid

200-500 examples per transformation, each was validated by 3 crowdworkers

DROP HotpotQA lIRC

21



Model performance drops on generated examples (HotpotQA)

Reader and UnifiedQA-HotpotQA

@ Reader [ UnifiedQA-HotpotQA
100

75
50

25

original subset contrast-set validated contrast-set consistency
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Model performance drops on generated examples (DROP)

B TASE [ UnifiedQA-DROP
100

75
50

25

DROP dev validated contrast-set contrast-set consistency
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Analysis: performance per transformation (DROP)
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Analysis: performance per transformation (DROP)
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New research program?

Original Q s there a fence near the puddle? Label: Yes Pred: Yes |
Input: Cons Aug.Q#1 s there a wall near the puddle? ettt
e aEEes . ¥ Aug.Q#2 Areth the puddl
i_él_i_c_q_s_a_v_s:_l?gl}_': ] senat;r:ce, AMR A::QCB Is teherzr:r:zizpr;:r:t n:;::he: PATIENT : CHANGE_SPEC (sparse)
Input Sentence @PATIENT+complete—partial: the athlete
It-cleft Q In the operation room|, the doctor| | comforted |the athlete |.
! It is Alice who saw Bob. Sentence: sy NT P NT
Vessccssssssscscsccssansans M| 01 £ b
Passive Something(NN) was(VBD) VERB : CHANGE _VTENSE (present)
A Vs sas e b Bak. {broken(VBN) in(IN
 Alice wanseen by Bob, ; my(pr:)s) ezwgifxe()NN) . g VERB+active+past—present: comfort
AMR: LOCATIVE:CHANGE_TAG(TEMPORAL)
Output Sentences (b / break-01 : 6
Svntacti :ARG1 (s / something eng @ LOCATIVE—TEMPORAL+partial: in
yntactic :location (e / engine
parser :poss (i/1)))) C } , , . .
Lietal., 2020 C attributes: woou Input [ |O| | <id_@>, the doctor <id 2> <id_3> <id_4>.
i

to the left o)

6 [TEMPORAL: In the midst of the earthquakel, the doctor

AMR. Rashkit and attributes: blue =TT Output [VERB: is comforting] [PATIENT: the athlete panicking] .
s o the right o
Flanigan, 2021
Scene graphs, Bitton et SRL, Ross et al., 2021
al., 2021
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Role of symbolic models

Two roles discussed for symbolic models on two ends of the spectrum

e Explicitly-compositional models for compositional generalization

o Great performance

o Interpretability

o Butis it an upper-bound? A guide for more flexible model? Or the key to future models?
e Controlled data generation for evaluating (and improving?) robustness

o Train with standard models

o Sim2Real: cover the blind spots of your huge pre-trained models
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Thank you! questions?

Mor Geva

Tomer Wolfson

Jonathan Herzig
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